Underground Reservoir Nuclide Analysis Results (As of April 19, 2013)

			Underground Reservoir (Drain hole water)												
			i	ii		iii		iv		V		vi		٧	/ii
		Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side
Sampled time		5:30 AM	5:25 AM	5:40 AM	5:35 AM	5:50 AM	5:45 AM	6:00 AM	5:55 AM	6:05 AM	6:00 AM	6:10 AM	6:15 AM	6:20 AM	6:25 AM
Chloride cor	Chloride concentration (ppm)		6	9	6	8	6	9	7	6	6	10	8	5	8
	I-131	<3.1E-2	<2.9E-2	<2.5E-2	<2.8E-2	<2.0E-2	<3.0E-2	<2.2E-2	<2.7E-2	<2.4E-2	<2.4E-2	<2.4E-2	<2.6E-2	<2.8E-2	<2.7E-2
Radioactive	Cs-134	<5.0E-2	<5.6E-2	<4.7E-2	<5.1E-2	<4.9E-2	<5.0E-2	<5.0E-2	<5.1E-2	<4.9E-2	<4.9E-2	<5.0E-2	<5.5E-2	<4.7E-2	<5.3E-2
concentration	Cs-137	<6.8E-2	<6.7E-2	<6.6E-2	<6.9E-2	<6.6E-2	<6.6E-2	<6.8E-2	<6.7E-2	<6.6E-2	<7.0E-2	<6.6E-2	<6.7E-2	<6.7E-2	<6.7E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(Bq/cm ³)	ΑΙΙ β	2.1E+1	2.6E-1	2.4E+1	3.5E-2	1.8E-1	1.5E-1	2.4E-2	3.5E-2	4.0E-1	5.7E-2	8.3E-2	1.1E-1	3.5E-2	4.6E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

						Underg	round Re	servoir (L	eakage de	tector ho	le water)				
		i		ii		iii		iv		v /		vi		vii /	
		Northeast side	Southwest side	Northeast side	/	Northeast side	Southwest side	Northeast side	1/						
Sampled time		8:18 AM	8:19 AM	8:35 AM	8:33 AM	8:50 AM	8:49 AM		Not sampled		sid⁄e		Not sampled		sid/e
Chloride cor	Chloride concentration (ppm)		7	20	9	8	20	8				6			
	I-131	<2.1E-1	<2.8E-2	<3.9E-2	<2.5E-2	<2.3E-2	<3.2E-2	<2.5E-2		/		<2.2E-2		/	1
Radioactive	Cs-134	<2.5E-1	<5.0E-2	<5.4E-2	<5.0E-2	<4.7E-2	<5.3E-2	<5.1E-2				<5.0E-2			
concentration	Cs-137	<1.4E-1	<7.1E-2	<7.0E-2	<6.5E-2	<6.5E-2	<7.1E-2	<6.5E-2				<6.5E-2			
	γ nuclides other than the major 3 nuclides	3.0E+1*	ND	ND	ND	ND	ND	ND				ND			
(Bq/cm ³)	All β	3.6E+4	4.9E-1	7.2E+2	1.2E+0	5.0E-1	1.9E+2	2.5E-1				5.0E-2			

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

(Note 3) "ND" indicates that the measurement result of γ nuclides other than the major 3 nuclides are below the detection limit.

^{*} Sb-125: 2.9E+1, Ru-106: 1.4E+0

Underground Reservoir Observation Holes Nuclide Analysis Results (As of April 19, 2013)

		Underground reservoir observation holes (i - iii)												
	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14
Sampled time								9:51 AM			12:57 PM			
Chloride concentration (ppm)			being drilled	being drilled	being drilled			8	being drilled	being drilled	30	being drilled		being drilled
All β(Bq/cm ³)								<2.8E-2		- 4:	<3.1E-2			_

	Under	ground rese	ervoir obser	Underground reservoir observation holes (vi)					
	A15	A16	A17	A18	A19	B1	B2	В3	
Sampled time				2:42 PM					
Chloride concentration (ppm)	being drilled			10	being drilled	being drilled	being drilled	being drilled	
All β(Bq/cm ³)				<2.8E-2					

(Note 1) O.OE \pm O is the same as O.O x $10^{\pm O}$.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.