Underground Reservoir Nuclide Analysis Results (As of June 7, 2013)

			Underground Reservoir (Drain hole water)												
			i	ii		iii		iv		٧		vi		٧	⁄ii
		Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side
Sampled time		8:49 AM	8:57 AM	8:43 AM	8:51 AM	8:37 AM	8:45 AM	8:38 AM	8:45 AM	8:39 AM	8:35 AM	8:53 AM	8:44 AM	8:58 AM	9:02 AM
Chloride cor	Chloride concentration (ppm)		7	10	8	9	4	10	8	8	8	11	9	5	9
	I-131	<2.6E-2	<3.0E-2	<2.7E-2	<2.7E-2	<2.6E-2	<2.2E-2	<2.4E-2	<2.7E-2	<2.9E-2	<2.6E-2	<2.9E-2	<2.4E-2	<2.4E-2	<2.3E-2
Radioactive	Cs-134	<4.9E-2	<5.1E-2	<4.9E-2	<4.9E-2	<5.1E-2	<5.0E-2	<5.1E-2	<5.1E-2	<5.5E-2	<5.0E-2	<5.1E-2	<4.8E-2	<5.0E-2	<5.1E-2
concentration	Cs-137	<6.6E-2	<6.7E-2	<6.5E-2	<6.7E-2	<6.5E-2	<6.8E-2	<6.5E-2	<6.8E-2	<6.6E-2	<6.5E-2	<6.8E-2	<6.4E-2	<7.0E-2	<6.4E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(Bq/cm ³)	ΑΙΙ β	4.8E+0	<2.8E-2	3.3E-1	<2.8E-2	3.0E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	1.5E-1	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

Underground Reservoir (rvoir (Leakage detector hole water)								
		i		ii		iii		iv		v /		vi		vii				
													Southwest		/			
Sampled time		side 8:23 AM	side 8:28 AM	side 8:28 AM	side 8:35 AM	side 8:33 AM	side 8:40 AM	side 8:33 AM	side Not sampled	side	sid⁄e	side 8:49 AM	side Not sampled	side	sid/e			
Chloride cor	Chloride concentration (ppm)		6	12	12	9	10	9				5						
	I-131	<3.2E-2	<2.7E-2	<2.7E-2	<2.2E-2	<2.9E-2	<2.0E-2	<2.7E-2		/	/	<2.4E-2		/	1			
Radioactive	Cs-134	<6.5E-2	<5.1E-2	<4.9E-2	<5.0E-2	<5.1E-2	<5.3E-2	<5.0E-2				<4.9E-2						
concentration	Cs-137	<6.7E-2	<6.8E-2	<6.7E-2	<6.5E-2	<7.1E-2	<6.7E-2	<6.7E-2				<6.6E-2						
	γ nuclides other than the major 3 nuclides	1.9E-1*	ND	ND	ND	ND	ND	ND				ND						
(Bq/cm ³)	All β	4.5E+2	<2.8E-2	1.4E+1	<2.8E-2	<2.8E-2	3.3E+0	<2.8E-2				<2.8E-2						

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

(Note 3) "ND" indicates that the measurement result of γ nuclides other than the major 3 nuclides are below the detection limit.

^{*} Sb-125: 1.9E-1

Underground Reservoir Observation Holes Nuclide Analysis Results (As of June 7, 2013)

		Underground reservoir observation holes (i - iii)												
	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14
Sampled time	8:40 AM	8:50 AM	9:01 AM	8:36 AM	8:47 AM	8:55 AM	9:04 AM	9:13 AM	9:21 AM	9:30 AM	9:40 AM	8:59 AM	9:08 AM	9:16 AM
Chloride concentration (ppm)	10	11	12	8	9	7	8	10	9	10	35	9	9	11
All β(Bq/cm ³)	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2

	Under	ground rese	ervoir obser		servoir es (vi)			
	A15	A16	A17	A18	A19	B1	B2	В3
Sampled time	9:27 AM	9:39 AM	9:47 AM	8:39 AM	8:50 AM	9:22 AM	9:33 AM	9:46 AM
Chloride concentration (ppm)	9	13	9	9	9	29	7	9
All β(Bq/cm ³)	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2	<2.8E-2

(Note 1) O.OE \pm O is the same as O.O x $10^{\pm O}$.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.