Underground Reservoir Nuclide Analysis Results (As of June 23, 2013)

			Underground Reservoir (Drain hole water)												
			i		ii		iii		iv		٧		vi		v ii
			Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side
Sampled time		8:17 AM	8:23 AM	8:13 AM	8:18 AM	8:10 AM	8:14 AM	8:05 AM	8:10 AM	8:08 AM	8:02 AM	8:23 AM	8:11 AM	8:29 AM	8:34 AM
Chloride cor	Chloride concentration (ppm)		7	9	8	9	4	10	9	10	8	9	9	7	8
	I-131	<2.6E-2	<2.4E-2	<2.9E-2	<2.4E-2	<2.2E-2	<2.6E-2	<2.7E-2	<2.2E-2	<3.1E-2	<2.6E-2	<2.8E-2	<2.4E-2	<2.7E-2	<2.8E-2
Radioactive	Cs-134	<5.0E-2	<4.9E-2	<5.1E-2	<4.7E-2	<5.1E-2	<4.8E-2	<5.2E-2	<4.7E-2	<4.7E-2	<4.5E-2	<4.9E-2	<4.8E-2	<4.8E-2	<4.8E-2
concentration	Cs-137	<6.7E-2	<6.7E-2	<6.7E-2	<6.5E-2	<6.7E-2	<6.4E-2	<6.9E-2	<6.4E-2	<6.7E-2	<6.6E-2	<6.7E-2	<6.5E-2	<6.6E-2	<6.4E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(Bq/cm ³)	ΑΙΙ β	5.0E+0	<3.0E-2	2.1E-1	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	6.1E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

			Underground Reservoir (Leakage detector hole water)												
		i			ii	i	ii		iv	,	v /		vi vii		⁄ii /
											/		Southwest		/
Sam	anlad tima	side 8:00 AM	side 8:00 AM	side 8:03 AM	side 8:05 AM	side 8:07 AM	side 8:10 AM	side	side Not sampled	side	sid⁄e	side	side	side	side
Sali	Sampled time		6.00 AIVI	6.03 AIVI	6.05 AW	6.07 AIVI	o. IU AIVI	6.00 AIVI	Not sampled		/	o. Io Alvi	Not sampled		
Chloride co	Chloride concentration (ppm)		6	49	11	9	9	9				6			/
	I-131	<2.7E-2	<3.0E-2	<3.6E-2	<2.5E-2	<2.6E-2	<2.6E-2	<2.3E-2		/	1	<2.5E-2		/	
Radioactive	Cs-134	<4.7E-2	<5.2E-2	<5.7E-2	<4.6E-2	<5.0E-2	<4.7E-2	<5.0E-2				<5.0E-2			
concentration	Cs-137	<6.7E-2	<6.5E-2	<7.1E-2	<6.3E-2	<6.7E-2	<6.5E-2	<6.9E-2				<6.5E-2			
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND				ND			
(Bq/cm ³)	ΑΙΙ β	1.9E+2	<3.0E-2	6.2E+2	<3.0E-2	<3.0E-2	8.2E+0	<3.0E-2				<3.0E-2			

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

(Note 3) "ND" indicates that the measurement result of y nuclides other than the major 3 nuclides are below the detection limit.

Underground Reservoir Observation Holes Nuclide Analysis Results (As of June 23, 2013)

	Underground reservoir observation holes (i - iii)													
	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14
Sampled time	8:11 AM	8:19 AM	8:28 AM	8:13 AM	8:23 AM	8:30 AM	8:37 AM	8:45 AM	8:53 AM	9:00 AM	9:07 AM	8:50 AM	8:43 AM	8:36 AM
Chloride concentration (ppm)	10	10	11	8	8	8	7	9	9	9	34	8	9	10
All β(Bq/cm ³)	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2

	Under	ground rese	ervoir obser		erground reservation hole			
	A15	A16	A17	A18	A19	B1	B2	В3
Sampled time	8:29 AM	8:21 AM	8:13 AM	9:08 AM	8:59 AM	8:48 AM	8:56 AM	9:05 AM
Chloride concentration (ppm)	8	14	8	8	9	24	4	9
All β(Bq/cm ³)	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2

(Note 1) O.OE \pm O is the same as O.O x $10^{\pm O}$.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.