Underground Reservoir Nuclide Analysis Results (As of December 10, 2013)

			Underground Reservoir (Drain hole water)												
		i		ii		i	iii		iv		٧		vi		vii
			Southwest						Southwest		Southwest		Southwest		Southwest
		side	side	side	side	side	side	side	side	side	side	side	side	side	side
Sampled time		8:31 AM	8:25 AM	8:02 AM	8:16 AM	7:58 AM	8:09 AM	7:32 AM	7:41 AM	7:55 AM	7:51 AM	8:09 AM	7:59 AM	8:14 AM	8:28 AM
Chloride cor	Chloride concentration (ppm)		7	10	10	9	7	12	16	8	5	9	8	5	9
	I-131	<2.3E-2	<2.5E-2	<2.1E-2	<1.8E-2	<2.6E-2	<1.9E-2	<2.2E-2	<2.0E-2	<2.4E-2	<2.4E-2	<2.2E-2	<2.8E-2	<2.0E-2	<2.3E-2
Radioactive	Cs-134	<4.4E-2	<4.5E-2	<4.2E-2	<4.7E-2	<4.3E-2	<4.3E-2	<4.0E-2	<4.7E-2	<4.0E-2	<4.7E-2	<4.1E-2	<4.4E-2	<4.3E-2	<4.3E-2
concentration	Cs-137	<5.5E-2	<6.7E-2	<5.4E-2	<6.5E-2	<5.6E-2	<6.6E-2	<5.7E-2	<6.7E-2	<5.6E-2	<6.7E-2	<5.6E-2	<6.7E-2	<5.8E-2	<6.6E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(Bq/cm ³)	ΑΙΙ β	4.6E-1	<3.0E-2	<3.0E-2	<3.0E-2	3.4E-1	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	7.6E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

			Underground Reservoir (Leakage detector hole water)													
		i		ii		iii		iv		v /		vi		vii		
		Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	Northeast side	Southwest side	
Sampled time		7:46 AM	8:21 AM	7:50 AM	8:13 AM	7:55 AM	8:06 AM	7:36 AM	Not sampled			8:04 AM	Not sampled	8:18 AM	8:23 AM	
Chloride cor	ncentration (ppm)	19	5	12	16	16	12	11				8		7	8	
	I-131	<3.5E-2	<2.3E-2	<2.9E-2	<1.8E-2	<3.4E-2	<2.4E-2	<2.5E-2		/	7	<2.5E-2		<2.6E-2	<2.4E-2	
Radioactive	Cs-134	<5.4E-2	<4.0E-2	<4.7E-2	<6.2E-2	<4.7E-2	<4.0E-2	<4.6E-2				<4.7E-2		<4.6E-2	<3.8E-2	
concentration	Cs-137	<6.7E-2	<5.6E-2	<6.6E-2	<5.5E-2	<6.7E-2	<5.6E-2	<6.7E-2				<6.4E-2		<6.5E-2	<5.7E-2	
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND				ND		ND	ND	
(Bq/cm ³)	ΑΙΙ β	5.5E+2	<3.0E-2	7.1E+1	3.5E-2	3.2E+2	1.2E+2	<3.0E-2				<3.0E-2		<3.0E-2	<3.0E-2	

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

(Note 3) "ND" indicates that the measurement result of y nuclides other than the major 3 nuclides are below the detection limit.

Underground Reservoir Observation Holes Nuclide Analysis Results (As of December 10, 2013)

	Underground reservoir observation holes (i - iii)														
	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	
Sampled time	8:17 AM	8:26 AM	8:36 AM	8:46 AM	9:12 AM	9:02 AM	8:55 AM	8:49 AM	8:43 AM	8:36 AM	9:15 AM	9:07 AM	9:00 AM	8:53 AM	
Chloride concentration (ppm)	8	10	10	7	8	9	9	9	9	13	33	9	7	11	
All β(Bq/cm ³)	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	

	Under	ground rese	ervoir obser	Underground reservoir observation holes (vi)				
	A15	A16	A17	A18	A19	B1	B2	В3
Sampled time	8:46 AM	8:39 AM	8:32 AM	8:23 AM	8:30 AM	9:02 AM	9:10 AM	9:19 AM
Chloride concentration (ppm)	8	10	6	7	10	20	5	9
All β(Bq/cm ³)	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2

(Note 1) O.OE \pm O is the same as O.O x $10^{\pm O}$.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

Nuclide Analysis Results of the Underground Bypass (Investigation Holes/Pumping Well) and the Sea Side Observation Holes (As of December 10, 2013)

	Underground bypass investigation holes				Underground bypass pumping well				Sea side observation holes								
	а		b	С	1	2	3	4	1	2	3	4	(5)	6	7	8	
Sampled time		/	9:25 AM	9:05 AM	9:58 AM	10:00 AM	10:03 AM	10:07 AM	8:44 AM	9:12 AM	9:52 AM	9:37 AM					
Chloride concentration (ppm)			10	10	55	66	50	10	10	5	8	12					
Tritium (Bq/cm ³)			Under analysis	Under analysis	Under analysis	Under analysis	Under analysis	Under analysis	Under analysis	Under analysis	Under analysis	Under analysis					
All β(Bq/cm ³)			<3.0E-2	<3.0E-2	<1.5E-2	<1.5E-2	<1.5E-2	<1.5E-2	<3.0E-2	<3.0E-2	<3.0E-2	<3.0E-2					

Half-life period Tritium: Approx. 12 years

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.