Underground Reservoir Nuclide Analysis Results (As of February 4, 2014)

		Underground Reservoir (Drain hole water)													
			i		ii		iii		iv		٧		vi		vii
			Southwest		Southwest				Southwest		Southwest		Southwest		Southwest
		side	side	side	side	side	side	side	side	side	side	side	side	side	side
Sampled time		8:45 AM	8:40 AM	8:16 AM	8:33 AM	8:12 AM	8:22 AM	8:06 AM	8:14 AM	8:28 AM	8:24 AM	8:42 AM	8:32 AM	8:47 AM	9:03 AM
Chloride cor	Chloride concentration (ppm)		9	11	10	10	9	12	14	10	7	10	9	10	10
	I-131	<2.5E-2	<2.4E-2	<2.6E-2	<2.1E-2	<2.6E-2	<2.4E-2	<2.6E-2	<2.0E-2	<2.7E-2	<1.8E-2	<2.3E-2	<2.3E-2	<2.0E-2	<2.7E-2
Radioactive	Cs-134	<4.6E-2	<4.3E-2	<4.3E-2	<4.0E-2	<5.0E-2	<3.8E-2	<4.9E-2	<4.4E-2	<4.6E-2	<4.0E-2	<4.9E-2	<3.9E-2	<4.6E-2	<4.1E-2
concentration	Cs-137	<6.4E-2	<5.8E-2	<6.6E-2	<5.8E-2	<6.8E-2	<5.7E-2	<6.6E-2	<5.8E-2	<6.5E-2	<5.6E-2	<6.7E-2	<5.7E-2	<6.7E-2	<5.6E-2
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(Bq/cm ³)	ΑΙΙ β	1.8E-1	<3.2E-2	<3.2E-2	<3.2E-2	1.2E-1	5.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

			Underground Reservoir (Leakage detector hole water)														
		i		ii		iii		iv		v /		vi		\	⁄ii		
									Southwest				Southwest		Southwest		
Sampled time		side 8:04 AM	side 8:38 AM	side 8:18 AM	side 8:30 AM	side 8:09 AM	side 8:26 AM	side 8:09 AM	side Not sampled	side	sid⁄e	side 8:37 AM	side Not sampled	side 8:51 AM	side 8:57 AM		
Chloride cor	ncentration (ppm)	14	8	23	15	18	12	11				8		11	10		
	I-131	<2.8E-2	<2.3E-2	<2.9E-2	<2.3E-2	<2.7E-2	<2.5E-2	<2.3E-2		/		<2.3E-2		<3.0E-2	<2.2E-2		
Radioactive	Cs-134	<4.7E-2	<4.0E-2	<4.4E-2	<4.4E-2	<4.4E-2	<4.1E-2	<5.0E-2				<4.5E-2		<4.7E-2	<3.9E-2		
concentration	Cs-137	<6.7E-2	<5.7E-2	<6.5E-2	<5.5E-2	<6.5E-2	<5.5E-2	<6.5E-2				<6.5E-2		<6.6E-2	<5.8E-2		
	γ nuclides other than the major 3 nuclides	ND	ND	ND	ND	ND	ND	ND				ND		ND	ND		
(Bq/cm ³)	All β	2.0E+2	<3.2E-2	2.1E+2	<3.2E-2	2.0E+1	5.9E+1	<3.2E-2				<3.2E-2		<3.2E-2	<3.2E-2		

Half-life period I-131: Approx. 8 days, Cs-134: Approx. 2 years, Cs-137: Approx. 30 years

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

(Note 3) "ND" indicates that the measurement result of y nuclides other than the major 3 nuclides are below the detection limit.

Underground Reservoir Observation Holes Nuclide Analysis Results (As of February 4, 2014)

		Underground reservoir observation holes (i - iii)													
	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	
Sampled time	8:34 AM	8:42 AM	8:50 AM	9:00 AM	9:52 AM	9:44 AM	9:36 AM	9:27 AM	9:19 AM	9:11 AM	9:20 AM	9:13 AM	9:05 AM	9:00 AM	
Chloride concentration (ppm)	10	9	11	8	10	9	10	11	10	15	35	11	9	13	
All β(Bq/cm ³)	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	

	Under	ground rese	ervoir obser	s (i - iii)	Underground reservoir observation holes (vi)				
	A15	A16	A17	A18	A19	B1	B2	В3	
Sampled time	8:53 AM	8:48 AM	8:42 AM	9:36 AM	9:28 AM	8:38 AM	8:46 AM	8:57 AM	
Chloride concentration (ppm)	11	13	10	7	11	18	5	13	
All β(Bq/cm ³)	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2	

(Note 1) O.OE \pm O is the same as O.O x $10^{\pm O}$.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.

Nuclide Analysis Results of the Underground Bypass (Investigation Holes/Pumping Well) and the Sea Side Observation Holes (As of February 4, 2014)

	Underground bypass investigation holes			Undergr	ound byp	ass pum	ping well	Sea side observation holes							
	а	b	С	1	2	3	4	1	2	3	4	⑤	6	7	8
Sampled time	/	9:07 AM	9:29 AM	10:25 AM	10:29 AM	10:33 AM	10:36 AM	8:52 AM	9:16 AM	10:04 AM	9:41 AM				
Chloride concentration (ppm)		9	12	12	28	60	9	10	9	8	12				
Tritium (Bq/cm ³)		Under analysis	Under analysis	Under analysis	Under analysis										
All β(Bq/cm ³)		<3.2E-2	<3.2E-2	<1.6E-2	<1.6E-2	<1.6E-2	<1.6E-2	<3.2E-2	<3.2E-2	<3.2E-2	<3.2E-2				

Half-life period Tritium: Approx. 12 years

(Note 1) O.OE±O is the same as O.O x 10^{±O}.

(Note 2) The figures written next to "<" indicate the detection limit when the measurement result is below the detection limit.