Plant Status of Fukushima Daiichi Nuclear Power Station May 2nd, 2011 Tokyo Electric Power Company #### <Draining Water at Underground Floor of Turbine Building (T/B)> - ♦ Transference of water of Unit 2 to Central Radioactive Waste Treatment Facility - From 10:08 am, April 19th to 9:16 am, April 29th, and after 2:05 pm, April 30th transferring water from the vertical shaft of the trench of Unit 2 to Central Radioactive Waste Treatment Facility was implemented. (Water level increase at Process Main Building: 1,377 mm as of 7:00 am on May 2nd). - From 10:00 am, May 2nd, transferring puddle water in the basement of the turbine building of Unit 6 to temporary tanks was started. ♦ Water level at the vertical shaft of the trench and T/B (As of 7:00 am, May 2nd) | | Vertical Shaft of Trench (from top of grating to surface) | T/B | |--------|---|------------------------------------| | Unit 1 | O.P. +2,060 mm (1,940 mm) | O.P. +5,050 mm | | | not changed since 7:00 am, May 1st | not changed since 7:00 am, May 1st | | Unit 2 | O.P. +3,160 mm (840 mm) | O.P. +3,100 mm | | | not changed since 7:00 am, May 1st | not changed since 7:00 am, May 1st | | Unit 3 | O.P. +3,110 mm (890 mm) | O.P. +3,050 mm | | | 10mm increased since 7:00 am, | not changed since 7:00 am, May 1st | | | May 1 st | | | Unit 4 | | O.P. +3,150 mm | | | _ | 50mm increased since 7:00 am, | | | | May 1st | ### <a href="mailto: Monitoring of Radioactive Materials Konitoring Radio ♦ Density of Iodine 131 in the seawater (Reference purpose) Density limit by the announcement of Reactor Regulation: 0.04Bq/cm³ Sampling: Everyday | Sampling Location (seacoast) | Date | Tiı | me | | nsity
/cm³) | | Criteria
nes) | |--|------|------|-------|-------|----------------|-------------|------------------| | Approx. 30m north to Discharge Canal of Units 5 & 6 of Fukushima Daiichi | | 8:45 | 14:15 | 0.016 | 0.022 | Approx.0.40 | Approx.0.55 | | Sampling Location (seacoast) | Date | Tir | ne | Density
(Bq/cm³) | | Ratio to Criteria (times) | | |--|------|------|-------|---------------------|-------|---------------------------|-------------| | Approx. 330m south to Discharge Canal of Units 1 to 4 of Fukushima Daiichi. | | 8:30 | 14:00 | 0.0069 | 0.013 | Approx.0.17 | Approx.0.33 | | Around the north
Discharge Canal of
Fukushima Daini (10km
from Fukushima Daiichi) | 5/1 | 8:40 | | 0.013 | | Approx.0.33 | | | Around Iwasawa Seashore
(approx. 16km from
Fukushima Daiichi) | 5/1 | 8: | 10 | 0.0 | 0097 | Appro | ox.0.24 | On May $1^{\rm st}$ no sampling from offshore 14 points because of the bad weather | Sampling Location (offshore) | Date | Time | Density
(Bq/cm³) | Ratio to Criteria
(times) | | |--|------|-------|--------------------------|------------------------------|--| | Approx. 3km from the offshore of Haramachi Ward, Minamisoma City | 4/29 | 10:59 | 0.0054 | Approx. 0.14 | | | Approx. 3km from the offshore of Odaka Ward, Minamisoma City | 4/29 | 10:39 | 0.0052 | Approx. 0.13 | | | Approx. 3km from the offshore of Iwasawa, Naraha Town | 4/30 | 8:31 | 0.0085 | Approx. 0.21 | | | Approx. 3km from the offshore of the north of Iwaki City | 4/30 | 8:04 | 0.0085 | Approx. 0.21 | | | Approx. 3km from the offshore of Natsuigawa River, Iwaki City | 4/30 | 7:33 | Below detection
level | - | | | Approx. 3km from the offshore of Onahama Port, Iwaki City | 5/1 | 6:00 | 0.010 | Approx. 0.25 | | | Approx. 3km from Ena,
Iwaki City | 5/1 | 6:20 | 0.010 | Approx. 0.25 | | | Approx. 3km from
Numanouchi, Iwaki City | 4/30 | 7:16 | Below detection level | - | | | Approx. 3km from
Toyoma, Iwaki City | 5/1 | 6:50 | 0.0073 | Approx. 0.18 | | | Approx. 8km from the offshore of Odaka Ward, Minamisoma City | 4/29 | 10:06 | 0.010 | Approx. 0.25 | | | Approx. 8km from the offshore of Iwasawa, Naraha Town | 4/30 | 8:56 | 0.014 | Approx. 0.35 | | | Sampling Location (offshore) | Date | Time | Density
(Bq/cm³) | Ratio to Criteria
(times) | |---|------|------|---------------------|------------------------------| | Approx. 15km from the offshore of Minamisoma City | | 9:45 | 0.016 | Approx. 0.40 | | Approx. 15km from the offshore of Ukedo River, Namie Town | | 9:25 | 0.012 | Approx. 0.30 | | Approx. 15km from the offshore of Fukushima Daiichi | | 9:00 | 0.021 | Approx. 0.53 | | Approx. 15km from the offshore of Fukushima Daini | | 8:40 | 0.015 | Approx. 0.38 | | Approx. 15km from the offshore of Iwasawa Seashore, Naraha Town | | 8:15 | 0.0064 | Approx. 0.16 | | Approx. 15km from the offshore of Hirono Town | 4/30 | 7:55 | 0.010 | Approx. 0.25 | From April 29th, we began sampling at five points 3km offshore of Ibaragi prefecture (Takadokohama shore, Kujihama shore, Oarai shore, Hirai shore and Namisaki shore). The result on April 29th was below detection level at all five points. ### <Water Injection and Spraying to Spent Fuel Pools> ♦ Actual Result on May 1st No water injection or spraying ♦ Actual Result on May 2nd [Unit 2] 10:05am \sim 11:40am Injection of freshwater by Fuel Pool Cooling and Filtering (Clean up) System (approx. 55t). ## ♦ Others - We are conducting detailed nuclide analysis on the water collected on April 12^{th} from the spent fuel pool of Unit 4. - We are conducting detailed nuclide analysis on the water collected on April 16^{th} from the skimmer surge tank of Unit 2. - From April 22nd, we started to examine the level of water and the dose of radiation, etc. of the spent fuel pool of Unit 4. # <Water Injection to Reactor Pressure Vessels> [Unit 1] Injecting fresh water: Reactor pressure vessel temperature: At 11:00am, May 2^{nd,} <Feed-water nozzle> 142.2 °C <Bottom of reactor pressure vessel> 105.8 °C [Unit 2] Injecting fresh water Reactor pressure vessel temperature: At 11:00am, May 2nd, <Feed-water nozzle> 117.6 °C [Unit 3] Injecting fresh water Reactor pressure vessel temperature: At 11:00am, May 2nd, <Bottom of reactor pressure vessel> 125.3°C [Unit 4] [Common spent fuel pool] No particular changes on parameters. [Units 5/6] Reactor cold shutdown. No particular changes on parameters. - At 10:14am on April 29th, we changed the amount of injecting freshwater to the reactor of Unit 1 from 10.0 m ³/h to 6.0m ³/h. ## <Injection of Nitrogen Gas to the Primary Containment Vessel of Unit 1 (PCV)> - ♦ Injection of nitrogen gas - From 1:31am, April 7^{th} , we started to inject nitrogen gas to PCV using temporary nitrogen generators. - At 1:20am, April 7th, before we injected nitrogen gas, the D/W pressure was 156.3kPaabs and it has changed to 140.3kPaabs, as of 11:00am, May 2nd. The injected amount of nitrogen gas was approx. 16,600m³. #### <Others> - Since April 26th, we have continued to spray the dust inhibitor (On May 1st, approx. 5,400 m² were sprayed at the west side of shallow draft quay and the South-side of R/B of Unit 4; on May 2nd, approx. 9,500 m² planned to be sprayed at the mountain side of shallow draft quay and the south side of the reactor building of Unit 4.) - Since April 10^{th} , we have been clearing outdoor rubbles by a remote control. (On May 2^{nd} , the work was conducted) - Installation work of exhauster was initiated in order to improve the work environment in the reactor building of Unit 1. End