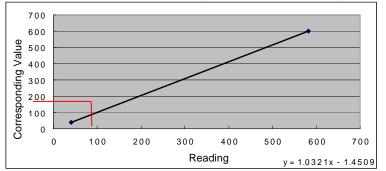

Correction of pressure indicator of reactor containment vessel

• Correction of pressure indicator of reactor containment vessel (Pl-1601-68)

Before correction

May 12th,2011 Tokyo Electric Power Company After correction

	Standard input value (MPa)	Input value (MPa)	Standard output value (MPa)	Output value (MPa)	Error (%)
20%	0	0	0	0.005	1.0
80%	0.300	0.300	0.300	0.305	1.0



- · We corrected pressure indicator of reactor containment vessel
- Reading after correction was 0.020MPa (gauge pressure), and 120.57KPa abs in absolute pressure. (as of 10:00am on May 12th)

• Attrib. of pressure indicator of reactor containment vessel (PI-1601-69)

	Input value (kPa abs)	Output value (kPa abs)	Error (%)	Acceptable error range	
6.67%	40	40.16	+0.4	. 0.20/	
100%	600	582.72	-2.88	± 0.2%	

Relationship between reading and corresponding value

- As a result of confirmation of attrib. of input and output, we confirmed drift of indicators.
- Relationship between attributed reading and corresponding value of pressure containment vessel is shown below

Corresponding value = $1.0321 \times (reading) - 1.4509$

- Current pressure of containment vessel is 118.4KPa abs in reading and 120.75KPa abs in corresponding value.
- Because the difference between reading of pressure indicator and corresponding value is almost the same (0.03% gap), we assume that we can get correct value by using corresponding formula.

20110510 ~ 20110511 Correction of water level indicator (Fuel area)

The result of correction of the indicator

Indicator correction data

	Standard value of water level (cm)	Input value (kPa)	Correspondi ng output value in power voltage (mV)	Correspon ding value in water level in reactor (cm)	Error (%)	Acceptabl e error range (%)
0 %	-300	-78.53	40.7	-296.8	+0.4	± 0.5
100%	500	-1.06	199.9	499.5	-0.1	1 0.5

^{*} We did not correct the indicator because the data gathered were within acceptable error range.

Data before and after water injection

Type of indicator	Controlled from Central control room (LI-263-122A)	Remote control (LT-263-121A)	Temporally differential pressure sensor
Before	-170cm	-1.67m	
After	Downscale 1	Downscale 1	Over scale 2

- 1: Under -300cm
- 2 : Temporally differential pressure sensor indicates over scale (over 100kPa), and if it is converted into water level value, it becomes about under -500cm (reference value).

Result of work:

- We did not observe significant drift phenomenon regarding water level indicator of nuclear reactor.
- Because reading of central control room indicator was downscale and temporally differential pressure sensor became over scale, we assume that water level in nuclear reactor is under -500cm from TAF.