Correction of pressure indicator of reactor containment vessel • Correction of pressure indicator of reactor containment vessel (Pl-1601-68) Before correction May 12th,2011 Tokyo Electric Power Company After correction | | Standard input value (MPa) | Input
value
(MPa) | Standard output value (MPa) | Output
value
(MPa) | Error
(%) | |-----|----------------------------|-------------------------|-----------------------------|--------------------------|--------------| | 20% | 0 | 0 | 0 | 0.005 | 1.0 | | 80% | 0.300 | 0.300 | 0.300 | 0.305 | 1.0 | - · We corrected pressure indicator of reactor containment vessel - Reading after correction was 0.020MPa (gauge pressure), and 120.57KPa abs in absolute pressure. (as of 10:00am on May 12th) • Attrib. of pressure indicator of reactor containment vessel (PI-1601-69) | | Input value
(kPa abs) | Output value
(kPa abs) | Error
(%) | Acceptable error range | | |-------|--------------------------|---------------------------|--------------|------------------------|--| | 6.67% | 40 | 40.16 | +0.4 | . 0.20/ | | | 100% | 600 | 582.72 | -2.88 | ± 0.2% | | Relationship between reading and corresponding value - As a result of confirmation of attrib. of input and output, we confirmed drift of indicators. - Relationship between attributed reading and corresponding value of pressure containment vessel is shown below Corresponding value = $1.0321 \times (reading) - 1.4509$ - Current pressure of containment vessel is 118.4KPa abs in reading and 120.75KPa abs in corresponding value. - Because the difference between reading of pressure indicator and corresponding value is almost the same (0.03% gap), we assume that we can get correct value by using corresponding formula. # 20110510 ~ 20110511 Correction of water level indicator (Fuel area) ### The result of correction of the indicator #### Indicator correction data | | Standard
value of
water level
(cm) | Input
value
(kPa) | Correspondi
ng output
value in
power
voltage (mV) | Correspon
ding value
in water
level in
reactor
(cm) | Error
(%) | Acceptabl
e error
range
(%) | |------|---|-------------------------|---|--|--------------|--------------------------------------| | 0 % | -300 | -78.53 | 40.7 | -296.8 | +0.4 | ± 0.5 | | 100% | 500 | -1.06 | 199.9 | 499.5 | -0.1 | 1 0.5 | ^{*} We did not correct the indicator because the data gathered were within acceptable error range. Data before and after water injection | Type of indicator | Controlled
from Central
control room
(LI-263-122A) | Remote
control
(LT-263-121A) | Temporally
differential
pressure
sensor | |-------------------|---|------------------------------------|--| | Before | -170cm | -1.67m | | | After | Downscale
1 | Downscale
1 | Over scale
2 | - 1: Under -300cm - 2 : Temporally differential pressure sensor indicates over scale (over 100kPa), and if it is converted into water level value, it becomes about under -500cm (reference value). #### Result of work: - We did not observe significant drift phenomenon regarding water level indicator of nuclear reactor. - Because reading of central control room indicator was downscale and temporally differential pressure sensor became over scale, we assume that water level in nuclear reactor is under -500cm from TAF.