Plant Status of Fukushima Daiichi Nuclear Power Station

June 17, 2011 Tokyo Electric Power Company

<Draining Water on Underground Floor of Turbine Building (T/B)>

- Construction status of accumulated radioactive water treatment system and storage tank facility
 [Treatment Facility]
- From 3:45 am to 2:00 pm, on June 14: stand-alone commissioning of Cesium absorption Instruments (Kurion)
- From 1:10 pm to 8:35 pm on June 15, decontamination instruments (AREVA) stand-alone commissioning.
- From 10:40 pm on June 15 to 0:20 am on June 16, both Cesium absorption instruments and decontamination ones commissioned in combination.
- From 0:20 am on June 16, the overall treatment facility started operation.
- From 7:20 pm on June 16, the water treatment system was stopped automatically. The leakage was found from the cesium adsorption instruments. The repairing work was started.
- From 10:00 am on June 17, the repairing work of the instruments was completed. Water was fed into the instruments for test.
- From 01:00 pm on June 17, the cesium adsorption instruments resumed the test operation.

[Storage Facility]

■ From June 8, big tanks to store and keep treated or contaminated water are being transferred and installed sequentially.

(40 01 7.00	an on dane 17)	
Unit	Draining water source -> place transferred	Status
Unit 1	Unit 1 Condenser -> CST (10:33 am, June 15 ~	[Process Main Building]
	9:52 am, June 16)	Water level: O.P.+5,006 mm
Unit 2	Unit 2 Vertical Shaft of Trench	(25 mm increase from 7:00 am, June 16)
	-> Process Main Building of Central Radioactive	Accumulated total increase in water level:
	Waste Treatment Facility (10:08 am, April 19 \sim	6,223 mm
	4:01 pm, May 26 and 6:39 pm, June 4 \sim 2:20 pm,	
	June 8, 6:03 pm, June 8 \sim 8:40 am, June 16)	[Miscellaneous Solid Waste Volume Reduction
	-> Unit 1 condenser (2:20 pm~2:59 pm, June 17*)	Treatment Building]
	* Water transfer was suspended due to failure of	Water level: O.P.+2,363 mm
	pump.	(12 mm increase from 7:00 am, June 16)
Unit 3	Unit 3 Turbine Building	Accumulated total increase in water level:
	-> Miscellaneous Solid Waste Volume Reduction	3,089 mm
	Treatment Building of Central Radioactive Waste	
	Treatment Facility (from 6:04 pm, May 17 \sim 9:10am,	
	May 25)	
	Unit 3 Turbine Building	

	-> Process Main Building of Central Radioactive	
	Waste Treatment Facility (3:30pm, June 11 \sim	
	5:01pm, June 12, 10:05 am on June 14 \sim 8:46 am	
	on June 16)	
Unit 6	Unit 6 Turbine Building temporary tanks (from	
	May 1 on demand basis, from 2:45 pm on June 5 to	
	6:00 pm on June 8, from 9:00 am on June 9 on	
	demand basis, and from 10:00 am on June 17)	

^{*} We announced result of transfer at Unit 6 as 10:09 am \sim 4:00 pm on July 15, while 10:00 am \sim 4:00 pm on July 15 was right. Please accept our sincere apologies for this inconvenience.

♦ Water level at the vertical shaft of the trench and T/B (As of 7:00 am, June 17)

	Vertical Shaft of Trench (from top of grating to surface)	T/B		
Unit 1	O.P. below +850 mm (>3,150mm)	O.P. +4,920 mm		
	No change from 7:00 am, June 16	No change from 7:00 am, June 16		
Unit 2	O.P. +3,708 mm (292mm)	O.P. +3,689 mm		
	45 mm increase since 7:00 am, June 15	42 mm increase since 7:00 am, June 16		
Unit 3	O.P. +3,841 mm (159 mm)	O.P. +3,826 mm		
	19 mm increase since 7:00 am, June 16	27mm increase since 7:00 am, June 16		
Unit 4	_	O.P. +3,815mm		
		12 mm decrease since 7:00 am, June 16		

- Water level at Unit 1 Reactor Building: as of 7:00 am on June 16, O.P. +4,418mm, 47mm decrease since 7:00 am, June 17
- With regard to Unit 2 and 3, blockage work to the extension of the pit and the pit whose flow path is not identified is underway.
 - (Blockage work of pits where incidents similar to outflow ones occurred or whose closure would ensure flow routes was completed by June 10.)

<Monitoring of Radioactive Materials>

Nuclide Analysis of Seawater (Reference purpose)
 Density limit by the announcement of Reactor Regulation: I-131: 50Bq/L, Cs-134: 60Bq/L, Cs-137: 90Bq/L

Sampling Location		Time	Ratio to Criteria (times)		
			lodine-131	Cecium-134	Cecium-137
Approx. 30m north to Discharge Canal of Units 5 & 6 of Fukushima Daiichi	6/16	9:05/13:15	ND/ND	0.77/0.68	0.57/0.43
Approx. 330m south to Discharge Canal of Units 1 to 4 of Fukushima Daiichi	6/16	8:50/13:00	ND/ND	0.33/0.40	0.26/0.23
Around Iwasawa Seashore, Naraha Town (approx. 16km from Fukushima Daiichi)	6/16	7:55	ND	0.12	0.11

Approx. 3km offshore of Natsuigawa river	6/16	5:15/5:15	ND/ND	ND/0.08	ND/ND
Approx. 3km offshore of Numanouchi	6/16	5:25/5:25	ND/ND	0.08/ND	ND/ND
Approx. 15km offshore of Ukedogawa river	6/16	9:25/9:25	ND/ND	0.08/ND	ND/ND

Analyses Results Left: Upper Layer, Right: Lower Layer

All the data in the following ten locations (nineteen points in total: where data were collected from upper and lower layers [3 / 8 / 15 km offshore]) were below the detectable limit

- Around the north Discharge Canal of Fukushima Daini (10km from Fukushima Daiichi)
- Approx. 3km offshore of north of Iwaki city
- Approx. 3km offshore of Onahama port
- Approx. 3km offshore of Ena
- Approx. 3km offshore of Toyoma
- Approx. 15km offshore of Minami-soma city
- Approx. 15km offshore of Fukushima Daiichi NPS
- Approx. 15km offshore of Fukushima Daini NPS
- Approx. 15km offshore of Iwasawa sea coast
- Approx. 15km offshore of Hirono town

<Water Injection and Spraying to Spent Fuel Pools>

Results	Unit 4	From 13:14 to 15:44 on June 16, water and hydrazine were injected by alternative feed
Results		water system (75t).
Results	Unit 3	From 10:19 am – 11:57 am on June 17, water and hydrazine were injected by the fuel pool
		cooling and filtering system (49t).

- From May 31, cooling using the circulating cooling system for Spent Fuel Pool, Unit 2 is underway.
 Spent fuel pool water temperature at 11:00 am on June 17: 31°C
- From June 16, changing water feeding line from concrete pumping vehicle to alternative water injecting line,
 injecting fresh water to spent fuel pool of Unit 4 was started

<Water Injection to Reactor Pressure Vessels> (as at 11:00 am on June 17)

Unit	Status of injecting water	Temp. of feed-water nozzle	Bottom of reactor pressure vessel
1	Injecting freshwater (approx. 4.5m³/h)	114.2℃	98.6℃
2	Injecting freshwater (approx. 4.9m³/h)	108.0℃	106.0℃
3	Injecting freshwater (approx. 11.2~11.3m³/h)	150.7℃	140.6℃

[Unit 4] Units 5] [Units 6] [Common spent fuel pool] No particular changes on parameters.

<Injection of Nitrogen Gas to the Primary Containment Vessel of Unit 1 (PCV)>

♦ Injection of nitrogen gas

Primary Containment Vessel pressure: 156.3 (1:20am, April 7) → 134.5kPaabs, (11:00am, June 17) approx.
 47,000m³.

<Others>

- Since April 10, we have been clearing outdoor rubbles by a remote control to improve working environment.
- Since April 26, we are continuing to spray dust inhibitor in the site of the power station. (On June 16, old

- administration office building, 6,600m2, on June 17, around ground etc).
- Since May 10, we commenced clearing of rubble in front of carry-in gate for large stuff of reactor building of Unit 3 by using robots.
- Since May 13, preparation work for installation of a cover for the reactor building of Unit 1.
- Since June 3, we have been carrying out restoration woks of port related facilities
- Since June 7, we have been installing support structure into the bottom of fuel spent pool of reactor building of Unit 4.
- From June 11, we started the work to improve inside working environment of Unit 2 Reactor Building.
 At 12:39 pm, we opened air-lock double doors of Reactor Building.
 From 12:42 pm we started to operate an ambient air filtration system.
- From approx. 10:00 am on June 13, we started operation of the circulating seawater purification facility.
- On June 15 decontamination commissioning was conducted at the inside of the truck bay door.

END