Plant Status of Fukushima Daiichi Nuclear Power Station

November 5, 2011 Tokyo Electric Power Company

<Draining Water on Underground Floor of Turbine Building (T/B)>

Status of highly concentrated accumulated radioactive water treatment facility and storage tank facility

[Treatment Facility]

∙6/17	20:00	Full operation of radioactive material removal instruments started.			
·6/24	12:00	Start of desalination facilities operation			
·6/27	16:20	Circulating injection cooling started.			
· 8/7	16:11	Evaporative Concentration Facility has started full operation.			
·8/19	19:33	We activated second cesium adsorption facility (System B) and started the treatment of			
		accumulated water by the parallel operation of cesium adsorption instrument and			
	decontamination instrument. At 19:41, the flow rate achieved steady state.				

[Storage Facility]

· 6/8 ~ Big tanks to store and keep treated or contaminated water have been transferred and installed sequentially.

Accumulated water in vertical shafts of trenches and at basement level of building

Unit	Draining water source Place transferred	Status		
Unit 1	·Unit 1T/B Unit 2T/B	· From 15:48 on November 4, Being transferred		
Unit 2	· Unit 2T/B Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building(High Temperature Incinerator Building)]	·From 9:38 on November 4, Being transferred		
Unit 3	· Unit 3T/B Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)]	· From 10.11 on November 2 I		
Unit 6	·Unit 6T/B Temporary tanks ·Temporary tanks Mega float	·November 5, No transfer ·November 5, No transfer		

Place transferred	Status of Water Level (As of November 5 at 7:00)		
Drosses Main Duilding	Water level: O.P.+ 2,604 mm(Accumulated total increase:3,821 mm) 69mm		
Process Main Building	decrease since 7:00 on November 4		
Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)	Water level: O.P.+ 1,716 mm(Accumulated total increase:2,442 mm) 319mm increase since 7:00 on November 4		

Water level of the vertical shaft of the trench, T/B and R/B(As of November 5 at 7:00)

	Vertical Shaft of Trench	T/B	R/B
Unit 1	O.P.< + 850 mm	O.P.+ 4,123 mm	O.P.+ 4,390 mm
	(No change since 7:00 on	(217mm decrease since 7:00 on	(35mm increase since 7:00 on
	November 4)	November 4)	November 4)
Unit 2	O.P.+ 3,009 mm	O.P.+ 3,029 mm	O.P.+ 3,112 mm
	(19mm increase since 7:00 on	(17mm increase since 7:00 on	(23mm increase since 7:00 on

	November 4)	November 4)	November 4)
Unit 3	O.P.+ 3,225 mm (11mm decrease since 7:00 on November 4)*	O.P.+ 2,989 mm (17mm decrease since 7:00 on November 4)	O.P.+ 3,174 mm (24mm decrease since 7:00 on November 4)
Unit 4	-	O.P.+ 3,029 mm (10mm decrease since 7:00 on November 4)	O.P.+ 3,043 mm (9mm decrease since 7:00 on November 4)

<Monitoring of Radioactive Materials>

Nuclide Analysis of Seawater(Reference) Since Oct 24, an approach to decrease the detection limits of radioactivity density was started.

Diago of compling	Date of Time of		Ratio of density limit (times)		
Place of sampling	sampling	sampling	I-131	Cs-134	Cs-137
Approx. 30m North of Discharge Channel of 5-6U of 1F	11/4	8:40	ND	0.05	0.03
Approx. 7km South of Discharge Channel of 3-4U of 2F	11/4	8:20	ND	0.07	0.05
Approx 7km South of Discharge Channel of 1-2u of 2F	11/4	7:50	ND	0.01	0.01

[•]Results of nuclide analysis of seawater at one Fukushima coast point sampled on November 4 and 3 offshore points sampled on November 3 are all ND for the 3 major nuclides (iodine-131, cesium-134 and cesium-137).

<Cooling of Spent Fuel Pools> (As of November 5 at 11:00)

Unit	Cooling type	Status of cooling	Temperature of water in Pool
Unit 1	Circulating Cooling System	Under operation(11:22 on August 10 -)	22.5
Unit 2	Circulating Cooling System	Under operation(17:21 on May 31 -)	26.0
Unit 3	Circulating Cooling System	Under operation(18:33 on June 30 -)	24.3
Unit 4	Circulating Cooling System	Under operation(10:08 on July 31 -)	32

[[]Unit 4] ·8/20 ~ We started operation of desalinating facility of the spent fuel pool.

<Water Injection to Pressure Containment Vessels> (As of November 5 at 11:00)

<u>Unit</u>	Status of injecting water	Feed-water nozzle Temp.	Reactor pressure vessel Bottom temp.	Pressure of primary containment vessel
Unit 1	Injecting freshwater (Feed Water System: Approx. 7.8 m ³ /h)	46.0	46.6	123.0 kPaabs
Unit 2	Injecting freshwater (Feed Water System: Approx. 3.0 m³/h,Core Spray System: Approx. 7.2 m³/h)	69.6	73.4	117 kPaabs
Unit 3	Injecting freshwater (Feed Water System: Approx. 2.3 m³/h,Core Spray System: Approx. 8.0m³/h)	63.4	70.8	101.5 kPaabs

• [Unit 1] [Unit 2] [Unit 3] 11/4 15:13, due to inspection of Unit 3 reactor water injection pump, water injection to Unit 3 was switched from Unit 3 reactor water injection pump to Unit 1 and 2 reactor water injection pump. In regard with water injection to Unit 1 reactor, water injection amount of feed water system was adjusted to approx.7.6 m³/h. Similarly for Unit 2, it was adjusted to approx.3.0 m³/h, and that of the reactor core spray system to approx.7.2 m³/h. For Unit 3, it was adjusted to approx.2.5 m³/h, and that of the reactor core spray

system to approx.8.1 m³/h.

[Unit 4] [Unit 5] [Unit 6] No particular changes in parameters.

<Others>

- ·10/7 ~ Continuously implementing water spray using water after purifying accumulated water of Unit 5 and Unit 6 to prevent spontaneous fire of trimmed trees and diffusion of dust.
- ·11/4 13:35 ~ 14:45 Dust sampling was conducted at hatch opening part and carry-in entrance of the reactor building in Unit 1.
- ·11/4 14:20 In order to strike balance between the amount of nitrogen injection to the primary containment vessel of Unit 2 and the amount of gas vented from the gas management system, the amount of gas vented from the gas management system was adjusted from approximately 14m³/h to approximately 22m³/h. /
- ·11/5 11:25 ~ 14:40 Dust sampling was conducted at Unit 3 reactor building roof top.

•

End