<Draining Water on Underground Floor of Turbine Building (T/B)>

Status of highly concentrated accumulated radioactive water treatment facility and storage tank facility [Treatment Facility]

- ·6/17 20:00 Full operation of radioactive material removal instruments started.
- ·6/24 12:00 Start of desalination facilities operation
- ·6/27 16:20 Circulating injection cooling started.
- ·8/7 16:11 Evaporative Concentration Facility has started full operation.
- •8/19 19:33 We activated 2nd cesium adsorption facility (System B) and started the treatment of accumulated water by the parallel operation of cesium adsorption instrument and decontamination instrument. At 19:41, the flow rate achieved a steady state.

[Storage Facility]

·6/8 ~ Large tanks to store and keep treated or contaminated water have been transferred and installed sequentially.

Accumulated water in vertical shafts of trenches and at basement level of building

Unit	Draining water source Place transferred	Status
Unit 1	·Unit 1T/B Unit 2T/B	·14:00 on December 10 - Transferring
Unit 2	·Unit 2T/B Central Radioactive Waste Treatment Facility [Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)]	·18:03 on November 30 - Transferring
Unit 3	· Unit 3T/B Central Radioactive Waste Treatment Facility [Process Main Building]	·9:25 on November 15 -12/5 10:31
Unit 6	·Unit 6T/B Temporary tanks	December 11 No transfer planned.

Place transferred	Status of Water Level (As of December 11 at 7:00)				
Process Main Building	Water level: O.P.+ 1,825 mm(Accumulated total increase: 3,042 mm)				
1 Tocess Main Building	104 mm decrease since 7:00 on December 10				
Miscellaneous Solid Waste Volume Reduction Treatment Building (High Temperature Incinerator Building)	Water level: O.P.+ 1,108 mm(Accumulated total increase: 1,834 mm) 50 mm decrease since 7:00 on December 10				

Water level of the vertical shaft of the trench, T/B and R/B(As of December 11 at 7:00)

	Vertical Shaft of Trench	T/B	R/B
Unit 1	O.P. <+ 850 mm	O.P.+ 3,458 mm	O.P.+ 3,906 mm
	(No change since 7:00 on	(239 mm decrease since 7:00 on	(19 mm decrease since 7:00 on
	December 10)	December 10)	December 10)
Unit 2	O.P.+ 2,800 mm	O.P.+ 2,821 mm	O.P.+ 2,947 mm
	(9 mm increase since 7:00 on	(7 mm increase since 7:00 on	(3 mm increase since 7:00 on
	December 10)	December 10)	December 10)
Unit 3	O.P.+ 3,285 mm	O.P.+ 3,052 mm	O.P.+ 3,280 mm
	(16 mm increase since 7:00 on	(17 mm increase since 7:00 on	(20 mm increase since 7:00 on
	December 10)	December 10)	December 10)
Unit 4	-	O.P.+ 3,040 mm (22 mm increase since 7:00 on December 10)	O.P.+ 3,052 mm (15 mm increase since 7:00 on December 10)

<Monitoring of Radioactive Materials>

Nuclide Analysis of Seawater (Reference)

Place of sampling	Date of	Time of	Ratio of density limit (times)		
Flace of Sampling	sampling	sampling	I-131	Cs-134	Cs-137
Approx. 30m North of Discharge Channel of 5,6U, 1F	12/10	8:45	ND	0.06	0.05
Approx. 330m South of Discharge Channel of 1-4U, 1F	12/10	8:20	ND	0.03	0.03
Around 3,4u Discharge Channel of 2F	12/10	8:00	ND	0.02	0.02
Approx. 7km South of 1,2U Discharge Channel of 2F	12/10	7:35	ND	ND	0.01

<Cooling of Spent Fuel Pools > (As of December 11 at 11:00)

Unit	Cooling type	Status of cooling	Temperature of water in Pool	
Unit 1	Circulating Cooling System	Under operation	13.5	
Unit 2	Circulating Cooling System	Under operation	28.9	
Unit 3	Circulating Cooling System	Under operation	14.4	
Unit 4	Circulating Cooling System	Under operation	21	

[Unit 2] ·12/10 11:37 We restarted the alternative cooling system for the spent fuel pool.

[Unit 4] ·11/29 ~ We started operation of the ion exchange equipment to remove salt from spent fuel pool.

< Water Injection to Pressure Containment Vessels > (As of December 11 at 11:00)

Unit	Status of injecting water	Feed-water nozzle temp.	Reactor pressure vessel bottom temp.	Pressure of primary containment vessel
Unit 1	Injecting freshwater (Feed Water System: Approx. 4.2m ³ /h, Core Spray System: Approx. 2.0 m ³ /h)	42.6	43.5	110.2 kPaabs
Unit 2	Injecting freshwater (Feed Water System: Approx. 2.9m³/h, Core Spray System: Approx. 6.0 m³/h)	69.5	74.5	111 kPaabs
Unit 3	Injecting freshwater (Feed Water System: Approx. 3.0 m ³ /h, Core Spray System: Approx. 6 0 m ³ /h)	58.6	65.6	101.6 kPaabs

[Unit 1] · 12/10 10:09 Regarding water injection to the reactor, we started injection from the Core Spray System in addition to the Feed Water System.

10:11 We adjusted water injection from Core Spray System to approx. 1.0 m³/h. (Water injection from the Feed Water System continued with the level of approx. 4.2 m³/h)

·12/11 10:30 We adjusted water injection from Core Spray System from approx. 1.0 m³/h to approx. 2.0 m³/h. (Water injection from the Feed Water System continued with the level of approx. 4.2 m³/h).

[Unit 2] ·12/10 11:25 Regarding water injection to the reactor, we adjusted water from the Core Spray System from approx. 4.5m³/h to approx. 5.5m³/h. (Water injection Feed Water System continued with the level of approx. 2.9 m³/h.)

·12/11 10:44 We adjusted water injection from Core Spray System from approx. 5.6 m³/h to approx. 6.0 m³/h, while we adjusted water injection from the Feed Water System from approx. 2.5 m³/h to approx. 3.0 m³/h

[Unit 3] ·12/10 11:25 We have adjusted water injection from the Feed Water System from approx. 2.2m³/h to approx. 3.2 m³/h.

(Water injection from the Core Spray System continued with the level of approx. 6.0 m³/h)

·12/11 11:10 Because we found that there was small vibration at the Flow Control Valve of Core Spray System, we adjusted water injection from Core Spray System from approx. 6.1 m³/h to approx. 6.5 m³/h, while we adjusted water injection from the Feed Water System from approx. 3.1 m³/h to approx. 2.5 m³/h. Because the vibration of the Flow Control Valve still

continued, we adjusted water injection from the Feed Water System to approx. 3.0 m³/h, and from Core Spray System to approx. 6.0 m³/h. Because the vibration is tiny and would do little influence on pipe arrangements and others, we will study on its countermeasure later.

[Unit 4] [Unit 5] [Unit 6] No major change

<Others>

·10/7 ~ Continuously implementing water spray using water after purifying accumulated water of Unit 5 and Unit 6 to prevent spontaneous fire of trimmed trees and diffusion of dust.