"Nuclide analysis result of radioactive materials in the soil of Fukushima Daiichi Nuclear Power Station (26th release)" (released on July 29th, 2011) (Attachment 3) # Wrong # Fukushima Daiichi Nuclear Power Station: Americium and Curium analysis result in the soil # 1.Analysis result (Unit : Bq/kg· wet soil) | Sampling spot (): Distance from the stack of Unit 1, 2 | Date of
sampling/
Analyses
organization | Pu-238 ^{*1} | Pu-239 ^{*1}
Pu-240 ^{*1} | U-234 ^{*2} | U-235 ^{*2} | U-238 ^{*2} | Am-241 | Cm-242 | Cm-243
Cm-244 | |---|--|---------------------------------------|--|--------------------------------|---------------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------| | Playground (west-northwest approx. 500m) | June 6/
Japan
Chemical | (1.7±0.
14)
×10 ⁻¹ | (6.6±0.80)
×10 ⁻² | (8.0+0.41)
×10 ⁰ | (3.8±0.72)
×10 ⁻¹ | (8.8±0.44)
×10 ⁰ | (3.4±0.74)
×10 ⁻² | (1.7+0.083)
×10 ⁰ | (1.1±0.14)
×10 ⁻¹ | | Adjacent to industrial waste disposal facility (south-southwest approx. 500m) | Analysis
Center | (6.7±0.91
)
×10 ⁻² | (2.6±0.54)
×10 ⁻² | (5.9±0.36)
×10 ⁰ | (2.9±0.70)
×10 ⁻¹ | (5.7±0.35)
×10 ⁰ | (2.2±0.55)
×10 ⁻² | (1.1+0.052)
×10 ⁰ | (4.1±0.75)
×10 ⁻² | | Average nuclide concentration ratio of Unit 1 \sim 3 (ratio in case Pu-238 as 1) *3 | | 1 | - | - | - | - | 0.1 | 1 0 | 1 | ^{*1:} Announced on June 22, 2011 # 2. Evaluation Detected Am and CM can be considered to be caused by the nuclear accident of this time. ^{*2:} Announced on July 7, 2011 ^{*3 :} Calculated value by ORIGEN code (Approximate figure) - Nuclide of Cm-242/Cm-243/Cm-244 do not exist in the natural world and especially, Cm-242 (half-life : approx. 160 days), which has relatively short half-life be detected. - Concentration ratio of each nuclide (Am-241/Cm-242/Cm-243,Cm-244) against sampling number and of Pu-238 is almost as same as the average composition ratio of Unit 1 ~ 3. Sampling number Pu-238:(Am-241/Cm-242/Cm-243,Cm-244) 1 : (0.2/10/0.6) Sampling number Pu-238:(Am-241/Cm-242/Cm-243,Cm-244) 1 : (0.3/16/0.6) **END** Correct (Attachment 3) ### Fukushima Daiichi Nuclear Power Station: Americium and Curium analysis result in the soil # 1.Analysis result (Unit: Bq/kg·wet soil) | Sampling spot (): Distance from the stack of Unit 1, 2 | Date of
sampling/
Analyses
organization | Pu-238 ^{*1} | Pu-239 ^{*1}
Pu-240 ^{*1} | U-234 ^{*2} | U-235 ^{*2} | U-238 ^{*2} | Am-241 | Cm-242 | Cm-243
Cm-244 | |--|--|-------------------------------------|--|--------------------------------|---------------------------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------| | Playground(west-northwest approx. 500m) | June 6/
Japan
Chemical | (1.7±0.
14)
×10 ⁻¹ | (6.6±0.80)
×10 ⁻² | (8.0±0.41)
×10 ⁰ | (3.8±0.72)
×10 ⁻¹ | (8.8±0.44)
×10 ⁰ | (3.4±0.74)
×10 ⁻² | (1.7 ± 0.083)
×10 ⁰ | (1.1±0.14)
×10 ⁻¹ | | Adjacent to industrial waste disposal facility (south-southwest approx. 500m) | Analysis Center | (6.7±0.91
)
×10 ⁻² | (2.6±0.54)
×10 ⁻² | (5.9±0.36)
×10 ⁰ | (2.9±0.70)
×10 ⁻¹ | (5.7±0.35)
×10 ⁰ | (2.2±0.55)
×10 ⁻² | (1.1 ± 0.052)
×10 ⁰ | (4.1±0.75)
×10 ⁻² | | Average nuclide concentration ratio of Unit 1 \sim 3 (ratio in case Pu-238 as 1) *3 | | 1 | - | - | - | - | 0.1 | 1 0 | 1 | ^{*1:} Announced on June 22, 2011 #### 2. Evaluation Detected Am and CM can be considered to be caused by the nuclear accident of this time. · Nuclide of Cm-242/Cm-243/Cm-244 do not exist in the natural world and especially, Cm-242 (half-life: approx. 160 days), which has relatively short half-life be detected. • Concentration ratio of each nuclide (Am-241/Cm-242/Cm-243,Cm-244) against sampling number and of Pu-238 is almost as same as the average composition ratio of Unit 1 ~ 3. Sampling number Pu-238:(Am-241/Cm-242/Cm-243,Cm-244) 1 : (0.2/10/0.6) Sampling number Pu-238:(Am-241/Cm-242/Cm-243,Cm-244) 1 : (0.3/16/0.6) **END** # Fukushima Daiichi Nuclear Power Station: Americium and Curium analysis result in the soil # 1.Analysis result (Unit: Bq/kg·wet soil) | Sampling spot (): Distance from the stack of Unit 1, | Date of
sampling/
Analyses
organization | Pu-238 ^{*1} | Pu-239 ^{*1}
Pu-240 ^{*1} | U-234 ^{*2} | U-235 ^{*2} | U-238 ^{*2} | Am-241 | Cm-242 | Cm-243
Cm-244 | |--|--|---------------------------------|--|--------------------------------|---------------------------------|--------------------------------|---------------------------------|--------------------------------------|---------------------------------| | Playground (west-northwest approx. 500m) | June 6/ | (1.7±0.14)
×10 ⁻¹ | (6.6±0.80)
×10 ⁻² | (8.0±0.41)
×10 ⁰ | (3.8±0.72)
×10 ⁻¹ | (8.8±0.44)
×10 ⁰ | (3.4±0.74)
×10 ⁻² | (1.7 ± 0.083)
$\times 10^{0}$ | (1.1±0.14)
×10 ⁻¹ | | Adjacent to industrial waste disposal facility (south-southwest approx. 500m) | Japan Chemical
Analysis Center | (6.7±0.91)
×10 ⁻² | (2.6±0.54)
×10 ⁻² | (5.9±0.36)
×10 ⁰ | (2.9±0.70)
×10 ⁻¹ | (5.7±0.35)
×10 ⁰ | (2.2±0.55)
×10 ⁻² | (1.1 ± 0.052)
$\times 10^{0}$ | (4.1±0.75)
×10 ⁻² | | Average nuclide concentration ratio of Unit 1 \sim 3 (ratio in case Pu-238 as 1) *3 | | 1 | - | - | - | - | 0 . 1 | 1 0 | 1 | ^{*1:} Announced on June 22, 2011 #### 2. Evaluation Detected Am and CM can be considered to be caused by the nuclear accident of this time. - Nuclide of Cm-242/Cm-243/Cm-244 do not exist in the natural world and especially, Cm-242(half-life: approx. 160 days), which has relatively short half-life be detected. - Concentration ratio of each nuclide (Am-241/Cm-242/Cm-243,Cm-244) against sampling number and of Pu-238 is almost as same as the average composition ratio of Unit 1 ~ 3. Sampling number Pu-238:(Am-241/Cm-242/Cm-243,Cm-244) 1: (0.2/10/0.6) Sampling number Pu-238:(Am-241/Cm-242/Cm-243,Cm-244) 1: (0.3/16/0.6) **END** ^{*2:} Announced on July 7, 2011 ^{*3 :} Calculated value by ORIGEN code (Approximate figure)