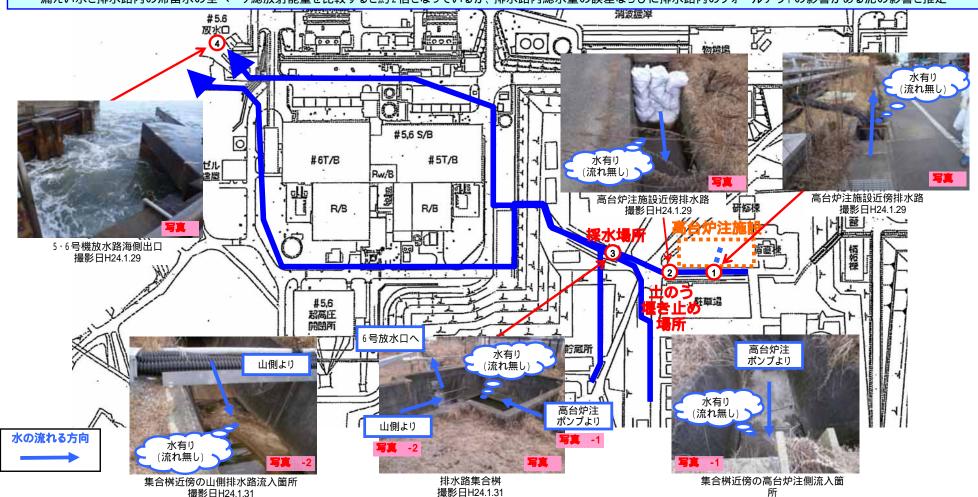
福島第一原子力発電所 非常用高台炉注ポンプ(C)の流量計付近からの漏えいについて

<高台炉注施設周辺排水路の流末状況>


平成24年1月29日午前9時50分頃、待機中の非常用高台ポンプ(C)の流量計付近より水が漏えいしており、排水路へ当該漏えい水が流出していることを確認。 排水路の各ポイントにおけるサンプリング分析の結果、以下の状況から、「当該漏えい水の海洋への放出はない」と評価。

- ・排水路の採水場所の水はセシウムはND、全ベータは海水と同じレベルであること
- ・排水路の採水場所より上流に別に排水路が1本接続しているが、この排水路の水には流れが無いため、全ベータ1.0×10²[Bg/cm³]の水が5.3×10⁻²[Bg/cm³]に希釈されることはないこと
- ・採水場所の水は滞留しており、その先への流れは無いこと
- ・採水場所から高台炉注設備脇の排水路まではほぼ水平であること
- ・高台炉注設備脇の排水路には約10m3の水が溜まっていること

また、以下の全ベータ総放射能量の状況から、「排水路内の土のう堰から先への流出はない」と評価。

- ・高台炉注施設から排水路へ流れた漏えい水の全ベータ総放射能量:約5.0×10⁷[Bq]
- ·高台炉注施設脇の排水路内(土のう堰より手前の部分)の滞留水の全ベータ総放射能量:約1.2×108[Bq]

漏えい水と排水路内の滞留水の全ベータ総放射能量を比較すると約2倍となっているが、排水路内総水量の誤差ならびに排水路内のフォールアウトの影響がある泥の影響と推定

福島第一原子力発電所 非常用高台炉注ポンプ(C)の流量計付近からの漏えいに係る核種分析結果

(データ集約:2/1)

採取場所	高台炉注施設上流水		排水路 漏えい水混入箇所 (土のう堰上流の溜り水)		排水路 下流側 (堰から約50mの溜り水)		福島第一 5,6号機放水口北側 (5,6号機放水口から北側に約30m地点)				②炉規則告示濃度限度 Bq/L
試料採取日 時刻	平成24年1月28日 11時35分		平成24年1月31日 7時40分		平成24年1月29日 13時15分		平成24年1月29日 8時40分		平成24年1月29日 14時50分		(別表第2第六欄 周辺監視区域外の 水中の濃度限度)
検出核種 (半減期)	①試料濃度 (Bq/L)	倍率 (①/②)	①試料濃度 (Bq/L)	倍率 (①/②)	①試料濃度 (Bq/L)	倍率 (①/②)	①試料濃度 (Bq/L)	倍率 (①/②)	①試料濃度 (Bq/L)	倍率 (①/②)	
I-131 (約8日)	ND		ND		ND		ND	-	ND	-	40
Cs-134 (約2年)	43		3, 900		ND		1.9	0. 03	2. 4	0. 04	60
Cs-137 (約30年)	54		5, 600		ND		3.0	0. 03	3. 1	0. 03	90
全β	100, 000		21, 000		53		_	_	27	_	_

- ※ 炉規則告示濃度は、「Bq/cm³」の表記を「Bq/L」に換算した値
- ※ 二種類以上の核種がある場合は、それぞれの濃度限度に対する倍率の総和を1と比較する。
- ※ 本分析における放射能濃度の検出限界値を下回る場合は、「ND」と記載。

漏えい水の検出限界値は次のとおり。I-131が約13Bq/L。

排水路漏えい水混入箇所の検出限界値は次のとおり。I-131が約58Bq/L, Cs-134が64Bq/L, Cs-137が約65Bq/L。

排水路下流側の検出限界値は次のとおり。I-131が約8.9Bq/L, Cs-134が24Bq/L, Cs-137が約29Bq/L。

- 5,6号機放水口北側の検出限界値は次のとおり。I-131が約0.80Bq/L。
- ※ 5,6号機放水口北側における1月29日8時40分は定例の γ 線核種分析として実施した。(全 β 放射能の測定結果なし)
- ※ 試料濃度欄の「一」は測定対象外を示す。